If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6x^2+60x-50=0
a = -6; b = 60; c = -50;
Δ = b2-4ac
Δ = 602-4·(-6)·(-50)
Δ = 2400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2400}=\sqrt{400*6}=\sqrt{400}*\sqrt{6}=20\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-20\sqrt{6}}{2*-6}=\frac{-60-20\sqrt{6}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+20\sqrt{6}}{2*-6}=\frac{-60+20\sqrt{6}}{-12} $
| (x+3/2x)+(3x-6/8x)=x/6 | | 8(x+1)-4x-2=(x-14)+(x+16) | | 5z=3+1/2 | | X+5(-2-x)=2 | | 3x+10=35−2x | | x2+x+1=3 | | 2^y-4=15 | | ⅓h=6;h=2 | | a*0.05138852=604.79 | | Ax0.05138852=604.79 | | (5-1)m=-3/8 | | x-17=-3,5 | | -3(4x-6)+2x=2x=2x-18 | | (5x-3)^(2/3)=9 | | Y=x(2x+10) | | 2x^2-4=9x+1 | | (4b+3)=(3b-4) | | 2x/7-1/7=3 | | 7n=7;n=0 | | 6x-22=15-4 | | X6x-22=15-4 | | 2/5x+3=1/2x+5 | | -2(x+3)=3x-4 | | 49x5=16x3 | | 3x-2-2x=4x+4 | | 2.25x=x | | 78+x=360 | | 5-4x=13-2x | | 2x+20=360 | | 2x+6x-3=0 | | 37-4y=2y+7 | | Z^4+z^2-1=0 |